Information

5.4: Study Guide: Intro to Chemistry - Biology

5.4: Study Guide: Intro to Chemistry - Biology



We are searching data for your request:

Forums and discussions:
Manuals and reference books:
Data from registers:
Wait the end of the search in all databases.
Upon completion, a link will appear to access the found materials.

Study Questions

Objective: Describe atomic structure and function. Relate the characteristics of water to processes critical for life.

Use this page to check your understanding of the content.

Vocabulary

  1. Kinetic energy
  2. Polar molecule
  3. Hydrophobic
  4. Hydrophilic
  5. Solvent
  6. Solute
  7. Surface tension
  8. pH
  9. Concentration
  10. 1 mole

Study Guide Questions

  1. Explain the relationship between the kinetic energy of molecules or atoms in a system, and temperature.
  2. Explain what it means when someone says, “Water is a polar molecule.” (Bet you hear that all the time!)
  3. What are hydrogen bonds?
  4. Why is it difficult to heat up (or cool down) water?
  5. Why is water such a good solvent? Are there any substances water cannot dissolve? Why or why not?
  6. What is surface tension? Give some biological examples of why surface tension in water is important.
  7. What is a surfactant?
  8. Be able to clearly relate pH and hydrogen ion concentration.
  9. What exactly does a pH of 4 mean?
  10. What impact does changing pH have on proteins?
  11. What are buffers? What do they do? Why are they important?

Otherwise we can organically control the stink bug by the use of insecticidal soap. 2. Corn earworm • These pests are found in yellow-green to almost black i.

Within the fruiting the bacteria then differentiates into a spherical spore which is then released into the surroundings to look for new sources of nutrients.

2002). In fungi, insects and crustaceans that contain chitin as a cell wall component, the major role of chitinases appears to be in modification of chitin. .

Perhaps Oulmes can create its own army of fungi in its lab and let them eat all its plastic waste which is not recyclable after collecting them from the cust.

Effect of different cleaning products of the growth of K12 strain Escherichia Coli? Which household cleaning product (hydrogen peroxide, Pine-sol, Clorox Ble.

It is a cyclic lipopeptide antibiotics that interfere with fungal cell synthesis by inhibition of beta(1,3) D-glucan synthase. Loss of cell wall glucan resul.

And from this, the plant uses it to create amino acids. The plant then provides sugar for the bacteria. A parasitic relationship between bacteria and a human.

The three main types of broccoli is used to grown and most common variety is calabrese broccoli. Sprouting and purple is other two varieties of broccoli. Clu.

Alternatively, individuals with unique alleles or behaviors will arise that would be adaptive against the parasites, or provide a means for escape from them.

This gene will then also be present in the offspring of that organism. An example of this is within corn. The corn is genetically modified to produce its own.


Biochemistry Screencasts and Notes

HOW TO SAVE A CROSSWORD LAB:

"The Biochemistry Review Crossword Lab" below is completed online, but it is difficult to SAVE. Follow these directions to save your COMPLETED puzzle to your Drive account.

To save your finished work, click "Share", then "Print". Where the Google Cloud Print menu says "Destination", choose Save to Google Drive. Hit Save.

Go to your Drive account and search for it using the term "biochemistry crossword". You might want to "Move" the file to your Biochemistry folder on Drive.

Biotechnology


Chapters 9 & 13


Sign Up for Reminders!

Click on the Remind logo below to receive occasional important text notices or reminders from KJ:


Mcdougal littell biology study guide answer key chapter 5

holt mcdougal biology study guide a answer key
why do chromosomes condense at the start of mitosis
what are the four stages of the cell cycle
section 3 regulation of the cell cycle study guide b
cell growth and division
5.2 mitosis and cytokinesis
what process divides the cell nucleus and its contents
offspring resulting from asexual reproduction and those

Quizlet provides biology study guide chapter 5 activities, flashcards and games. Start learning today for free! 12 Oct 2004 1 Introduction to Biology Teacher's Edition (TE). 11 . 8.1 Chapter 5: Cellular Respiration . .. Please note, the answers to the Review Questions, Points to Consider, Assessments, Quizzes, . Instead write “Guide students. Answer Key Holt McDougal Biology 1 Cell Growth and Division . Study Guide B continued. Main Idea: Cells divide at different rates. 5. Among different types CHAPTER 5. Cell Growth and Division. Name Period Date. STUDY GUIDE, CONTINUED. MAIN IDEA: Cells divide at different rates. 5. Among different How do the two word parts of your answer McDougal Littell Biology KEY CONCEPT. 5. i Study Guide. KEY CONCEPT - vocabulary. Cells have ?n-es s - -. Unit 2 Resource Book Study Guide 65. McDougal Littel Biology. Page 2. Name Period I>ate. STUDY GUIDE, CONTINUED How do the two word parts of your answer. Nucleotide: Refer to the Visual Vocab in Section 2 for visual answers. . Holt McDougal Biology. 5. From DNA to Proteins. Study Guide B. Section 3: DNA Solutions in Biology (9780547219479) Chapter 5. Cell Growth And Division .. Biology (California) Biology Study Guide Biology (Texas) Biology (Florida). Study Guide. KEY 46 chromosomes in human body cells. 22 homologous pairs. 7. 8. 4. 5. 6. McDougal Littell Biology. Cop y right. ©. M. cDou gal. Littell/Houg hton. Mifflin. Com pan y. CHAPTER. 6 Refer to Figure 6.5 for visual answers. Study online flashcards and notes for McDougal Littell Biology, Author: Stephen Nowicki Chapter 1 biology in the 21st century study guide answers


AP Chemistry

This course can help prepare students who wish to continue their scientific education after high school, as well as students who wish to perform exceptionally well on the SAT exam. The level of aptitude in this subject will assist students wishing to excel on the SAT and in college courses. Students who wish to go into a career in science or even enter a science-related field of study in college should strongly consider getting a jump start on their education and take AP Chemistry.

According to the College Board, AP Chemistry is an introductory college level course designed to be the equivalent of a student’s first year of college chemistry. It may also fulfill a lab requirement and free students from having to take other science classes. Students should attain a depth of understanding of fundamentals and a reasonable competence in dealing with chemical problems and solutions.

AP Chemistry is a course geared toward highly motivated students with interests in chemical and physical sciences. AP Chemistry builds on concepts covered in a regular or "honors" chemistry course, using greater detail in concept exploration and laboratory investigation. This course prepares students to take the AP Chemistry exam toward the end of the academic year. AP Chemistry topics include atomic theory, chemical bonding, phases of matter, solutions, types of reactions, equilibrium, reaction kinetics, and thermodynamics.

Anyone wishing to take an AP Chemistry course should take at least two years of high school math before enrolling in this course. Their math experience should also include a second year Algebra course in order to ensure that students are familiar with the types of functions that will be used during experiments. A basic first year chemistry course (Chemistry I) should also be completed in order to provide students with the foundation they need to succeed with higher levels of chemistry. Additionally, while AP Chemistry is a desirable course, universities also recommend that students take a basic physics course while in high school as well as higher math classes to prepare students for college.

AP Chemistry is a serious course and includes many course goals. According to the College Board’s website, by the time students take their AP Chemistry exam (or the SAT exam) they should be prepared to do the following:

  • Express scientific ideas both orally and in writing.
  • Plan scientific experiments involving chemical use, while also being able to record and explain each step of the experiment for future records.
  • Gain a deeper understanding of the periodic table as well as its more basic elements. Students should also become familiar with how different types of chemicals combine, their reaction when combined, as well as the behavior of molecules during the reacting process.
  • Become familiar with chemical equations and mathematical principles involved in chemical experiments and calculations.
  • Spend at least 290 minutes in a laboratory, familiarizing themselves with laboratory protocol, safety rules, equipment, etc.
  • Spend approximately 5 hours per week outside of class, studying chemistry and applying what they’ve learned. A practical application of chemistry is crucial to fully appreciating the course.
  • Gain an appreciation for chemistry as a coherent body of information and its applications towards science as well as everyday life.
  • Gain an appreciation and understanding of the scientific process and its many uses in chemistry, other scientific endeavors, and everyday life.
  • Use study notes and other study techniques in conjunction with textbooks such as Chemistry: The Central Science, or Modern Chemistry.

Students who choose to take Advances Placement courses should remember that they’re just that: Advanced. Students should be prepared to challenge themselves in order to develop above average study skills and discipline. Students who do this and commit themselves to their education will see a definite payoff. Their grades and academic confidence will improve tremendously, as will their preparedness for college.

Advanced placement courses are not only important for a student’s development, but they can look excellent on high school transcripts. Students that wish to get into the college or university of their choice should talk to their counselor about enrolling in an AP course (or several). Most importantly, students can save valuable time, energy, and money by earning college credit while still in high school! The more a student does to prepare themselves for college, the more it will pay off in the end. Advanced Placement courses are the perfect answer to students who want to get the most out of their education.

Here you will find AP Chemistry outlines and slides. We are working to add more AP Chemistry resources such as vocabulary terms, unit notes, topic notes, study questions, practice quizzes and glossary terms.


Exploring Creation With Biology Schedules

Exploring Creation With Biology Edition 1

Apologia's Exploring Creation with Biology (edition 1)
Co-op Schedule by: Cheryl Randall

Apologia's Exploring Creation with Biology (edition 1)

Co-op Schedules by:
Sheri Neely

Download Schedule (updated 5/2006- removed dates)
Download Schedule (updated 5/2006- removed dates)

Apologia's Exploring Creation with Biology (edition 2)

Michelle Goodrich
Michelle is writing about her co-op classes in her blog. She has posted her Exploring Creation with Biology co-op schedule at: Exploring Creation with Biology, 2nd edition co-op schedule
Michelle also offers a full set of quizzes to go with this class. For more information about Michelle's Exploring Creation with Biology quizzes, view either one of the links posted above or go to her Etsy Shop.

This ends the co-op resources for Exploring Creation with Biology. Please see my resources for biology at:


Atom Overview

Chemistry is the study of matter and the interactions between different types of matter and energy. The fundamental building block of matter is the atom. An atom consists of three main parts: protons, neutrons, and electrons. Protons have a positive electrical charge. Neutrons have no electrical charge. Electrons have a negative electrical charge. Protons and neutrons are found together in what is called the nucleus of the atom. Electrons circle around the nucleus.

Chemical reactions involve interactions between the electrons of one atom and the electrons of another atom. Atoms which have different amounts of electrons and protons have a positive or negative electrical charge and are called ions. When atoms bond together, they can make larger building blocks of matter called molecules.

The word "atom" was coined by the early Greeks Democritus and Leucippus, but the nature of the atom wasn't understood until later. In the 1800s, John Dalton demonstrated atoms react with each other in whole ratios to form compounds. The discovery of the electron earned J.J. Thomson the 1906 Nobel Prize in Physics. The atomic nucleus was discovered in the gold foil experiment conducted by Geiger and Marsden under the supervision of Ernest Rutherford in 1909.


Online Practice Resources

This is a list of free online resources that have practice tests and problems that may aid in your studying. If you need more practice, you should also consider buying a review book or asking your AP teacher for additional official practice tests.

College Board

The College Board has free-response questions (along with scoring guidelines) from past tests (2006 to 2013) on its site for AP Chemistry. You can also find free-response questions from 2014 to 2018 and 2019 on the AP Student section of the College Board website. All of these are great for practice!

ScienceGeek

I like this site because it's not all multiple choice. You have to solve problems completely on your own, which awesome practice for the AP test. There are tons of different activities that relate to all aspects of the course, and you can check your answers as you find them. This is a helpful resource for practice problems that will allow you to develop a strong fundamental understanding of the concepts.

Albert iO

Albert has sets of practice questions organized by concept. Each question is labeled Easy, Medium, or Hard, so you'll know whether you've mastered the material. (You need to pay to access some materials.) The site also records your progress and the accuracy of your answers in each topic area to make it easier to identify where your skills still need work. All questions are multiple choice, so make sure you also practice open-ended questions elsewhere (or do some of the problems without looking at the answer choices).

Varsity Tutors

This site has a bunch of practice test s on all topics related to AP Chemistry. Each test has a difficulty rating along with a listing of the average amount of time required to complete the questions. These tests are multiple choice , but there are plenty that will ask you to solve stoichiometry problems or balance equations. Just like Albert iO, once you're well-versed in the material, you can try to do the problems without looking at the answer choices.

Adrian Dingle's Chemistry Pages

This is a resource that offers short multiple choice quizzes on all topics in AP chemistry. The quizzes are only five questions long each, so they're good for quick review of concepts that you already know fairly well.


Contents

Philosophical logic Edit

Philosophical logic is an area of philosophy. It's a set of methods used to solve philosophical problems and a fundamental tool for the advancement of metaphilosophy. Philosophical logic also addresses extensions and alternatives to traditional, "classical" logic known as "non-classical" logics. John P. Burgess's Philosophical Logic introduces five types of non-classical logic, temporal logic, modal logic, conditional logic, relevantistic logic, and intuitionistic logic. [7]

Informal logic Edit

Informal logic is the study of natural language arguments. The study of fallacies is an important branch of informal logic. Since much informal argument is not strictly speaking deductive, on some conceptions of logic, informal logic is not logic at all. (See § Rival conceptions.)

Formal logic Edit

Formal logic is the study of inference with purely formal content. An inference possesses a purely formal and explicit content (i.e. it can be expressed as a particular application of a wholly abstract rule) such as, a rule that is not about any particular thing or property. In many definitions of logic, logical consequence and inference with purely formal content are the same.

Examples of formal logic include (1) traditional syllogistic logic (a.k.a. term logic) and (2) modern symbolic Logic:

  • Syllogistic logic can be found in the works of Aristotle, making it the earliest known formal study and studies types of syllogism. Modern formal logic follows and expands on Aristotle. [8][9]
  • Symbolic logic is the study of symbolic abstractions that capture the formal features of logical inference, [10][11] often divided into two main branches: propositional logic and predicate logic.

Mathematical logic Edit

Mathematical logic is an extension of symbolic logic into other areas, in particular to the study of model theory, proof theory, set theory, and computability theory. [12] [13]

The concepts of logical form and argument are central to logic.

An argument is constructed by applying one of the forms of the different types of logical reasoning: deductive, inductive, and abductive. In deduction, the validity of an argument is determined solely by its logical form, not its content, whereas the soundness requires both validity and that all the given premises are actually true. [14]

Completeness, consistency, decidability, and expressivity, are further fundamental concepts in logic. The categorization of the logical systems and of their properties has led to the emergence of a metatheory of logic known as metalogic. [15] However, agreement on what logic actually is has remained elusive, although the field of universal logic has studied the common structure of logics.

Logical form Edit

Logic is generally considered formal when it analyzes and represents the form of any valid argument type. The form of an argument is displayed by representing its sentences in the formal grammar and symbolism of a logical language to make its content usable in formal inference. Simply put, to formalize simply means to translate English sentences into the language of logic.

This is called showing the logical form of the argument. It is necessary because indicative sentences of ordinary language show a considerable variety of form and complexity that makes their use in inference impractical. It requires, first, ignoring those grammatical features irrelevant to logic (such as gender and declension, if the argument is in Latin), replacing conjunctions irrelevant to logic (e.g. "but") with logical conjunctions like "and" and replacing ambiguous, or alternative logical expressions ("any", "every", etc.) with expressions of a standard type (e.g. "all", or the universal quantifier ∀).

Second, certain parts of the sentence must be replaced with schematic letters. Thus, for example, the expression "all Ps are Qs" shows the logical form common to the sentences "all men are mortals", "all cats are carnivores", "all Greeks are philosophers", and so on. The schema can further be condensed into the formula A(P,Q), where the letter A indicates the judgement 'all – are –'.

The importance of form was recognised from ancient times. Aristotle uses variable letters to represent valid inferences in Prior Analytics, leading Jan Łukasiewicz to say that the introduction of variables was "one of Aristotle's greatest inventions". [16] According to the followers of Aristotle (such as Ammonius), only the logical principles stated in schematic terms belong to logic, not those given in concrete terms. The concrete terms 'man', 'mortal', etc., are analogous to the substitution values of the schematic placeholders P, Q, R, which were called the 'matter' (Greek: ὕλη , hyle) of the inference.

There is a big difference between the kinds of formulas seen in traditional term logic and the predicate calculus that is the fundamental advance of modern logic. The formula A(P,Q) (all Ps are Qs) of traditional logic corresponds to the more complex formula ∀ x ( P ( x ) → Q ( x ) ) in predicate logic, involving the logical connectives for universal quantification and implication rather than just the predicate letter A and using variable arguments P ( x ) where traditional logic uses just the term letter P. With the complexity comes power, and the advent of the predicate calculus inaugurated revolutionary growth of the subject. [ citation needed ] [17]

Semantics Edit

The validity of an argument depends upon the meaning, or semantics, of the sentences that make it up.

Aristotle's six Organon, especially De Interpretatione, gives a cursory outline of semantics which the scholastic logicians, particularly in the thirteenth and fourteenth century, developed into a complex and sophisticated theory, called supposition theory. This showed how the truth of simple sentences, expressed schematically, depend on how the terms 'supposit', or stand for, certain extra-linguistic items. For example, in part II of his Summa Logicae, William of Ockham presents a comprehensive account of the necessary and sufficient conditions for the truth of simple sentences, in order to show which arguments are valid and which are not. Thus "every A is B' is true if and only if there is something for which 'A' stands, and there is nothing for which 'A' stands, for which 'B' does not also stand." [18]

Early modern logic defined semantics purely as a relation between ideas. Antoine Arnauld in the Port Royal-Logic, [19] [20] says that after conceiving things by our ideas, we compare these ideas, and, finding that some belong together and some do not, we unite or separate them. This is called affirming or denying, and in general judging. [21] Thus truth and falsity are no more than the agreement or disagreement of ideas. This suggests obvious difficulties, leading Locke to distinguish between 'real' truth, when our ideas have 'real existence' and 'imaginary' or 'verbal' truth, where ideas like harpies or centaurs exist only in the mind. [22] This view, known as psychologism, was taken to the extreme in the nineteenth century, and is generally held by modern logicians to signify a low point in the decline of logic before the twentieth century.

Modern semantics is in some ways closer to the medieval view, in rejecting such psychological truth-conditions. However, the introduction of quantification, needed to solve the problem of multiple generality, rendered impossible the kind of subject-predicate analysis that underlies medieval semantics. The main modern approach is model-theoretic semantics, based on Alfred Tarski's semantic theory of truth. The approach assumes that the meaning of the various parts of the propositions are given by the possible ways we can give a recursively specified group of interpretation functions from them to some predefined domain of discourse: an interpretation of first-order predicate logic is given by a mapping from terms to a universe of individuals, and a mapping from propositions to the truth values "true" and "false". Model-theoretic semantics is one of the fundamental concepts of model theory. Modern semantics also admits rival approaches, such as the proof-theoretic semantics that associates the meaning of propositions with the roles that they can play in inferences, an approach that ultimately derives from the work of Gerhard Gentzen on structural proof theory and is heavily influenced by Ludwig Wittgenstein's later philosophy, especially his aphorism "meaning is use."

Inference Edit

Inference is not to be confused with implication. An implication is a sentence of the form 'If p then q', and can be true or false. The stoic logician Philo of Megara was the first to define the truth conditions of such an implication: false only when the antecedent p is true and the consequent q is false, in all other cases true. An inference, on the other hand, consists of two separately asserted propositions of the form 'p therefore q'. An inference is not true or false, but valid or invalid. However, there is a connection between implication and inference, as follows: if the implication 'if p then q' is true, the inference 'p therefore q' is valid. This was given an apparently paradoxical formulation by Philo, who said that the implication 'if it is day, it is night' is true only at night, so the inference 'it is day, therefore it is night' is valid in the night, but not in the day.

The theory of inference (or 'consequences') was systematically developed in medieval times by logicians such as William of Ockham and Walter Burley. It is uniquely medieval, though it has its origins in Aristotle's Topica and Boethius' De Syllogismis hypotheticis. Many terms in logic, for this reason, are in Latin. For instance, the rule that licenses the move from the implication 'if p then q' plus the assertion of its antecedent p, to the assertion of the consequent q, is known as modus ponens ('mode of positing')—from Latin: posito antecedente ponitur consequens. The Latin formulations of many other rules such as ex falso quodlibet ('from falsehood, anything [follows]'), and reductio ad absurdum ('reduction to absurdity' i.e. to disprove by showing the consequence as absurd), also date from this period.

However, the theory of consequences, or the so-called hypothetical syllogism, was never fully integrated into the theory of the categorical syllogism. This was partly because of the resistance to reducing the categorical judgment 'every s is p' to the so-called hypothetical judgment 'if anything is s, it is p'. The first was thought to imply 'some s is p', the latter was not, and as late as 1911 in the Encyclopædia Britannica article on "Logic", we find the Oxford logician T. H. Case arguing against Sigwart's and Brentano's modern analysis of the universal proposition.

Logical systems Edit

A formal system is an organization of terms used for the analysis of deduction. It consists of an alphabet, a language over the alphabet to construct sentences, and a rule for deriving sentences. Among the important properties that logical systems can have are:

    : no theorem of the system contradicts another. [23] : the system's rules of proof never allow a false inference from true premises. : if a formula is true, it can be proven, i.e. is a theorem of the system. : if any formula is a theorem of the system, it is true. This is the converse of completeness. (Note that in a distinct philosophical use of the term, an argument is sound when it is both valid and its premises are true.) [14] : what concepts can be expressed in the system.

Some logical systems do not have all these properties. As an example, Kurt Gödel's incompleteness theorems show that sufficiently complex formal systems of arithmetic cannot be consistent and complete [11] however, first-order predicate logics not extended by specific axioms to be arithmetic formal systems with equality can be complete and consistent. [24]

Logic and rationality Edit

As the study of argument is of clear importance to the reasons that we hold things to be true, logic is of essential importance to rationality. Here we have defined logic to be "the systematic study of the form of arguments" the reasoning behind argument is of several sorts, but only some of these arguments fall under the aegis of logic proper.

Deductive reasoning concerns the logical consequence of given premises and is the form of reasoning most closely connected to logic. On a narrow conception of logic (see below) logic concerns just deductive reasoning, although such a narrow conception controversially excludes most of what is called informal logic from the discipline.

There are other forms of reasoning that are rational but that are generally not taken to be part of logic. These include inductive reasoning, which covers forms of inference that move from collections of particular judgements to universal judgements, and abductive reasoning, [ii] which is a form of inference that goes from observation to a hypothesis that accounts for the reliable data (observation) and seeks to explain relevant evidence. American philosopher Charles Sanders Peirce (1839–1914) first introduced the term as guessing. [25] Peirce said that to abduce a hypothetical explanation a from an observed surprising circumstance b is to surmise that a may be true because then b would be a matter of course. [26] Thus, to abduce a from b involves determining that a is sufficient (or nearly sufficient), but not necessary, for b . [27] [28] [29]

While inductive and abductive inference are not part of logic proper, the methodology of logic has been applied to them with some degree of success. For example, the notion of deductive validity (where an inference is deductively valid if and only if there is no possible situation in which all the premises are true but the conclusion false) exists in an analogy to the notion of inductive validity, or "strength", where an inference is inductively strong if and only if its premises give some degree of probability to its conclusion. Whereas the notion of deductive validity can be rigorously stated for systems of formal logic in terms of the well-understood notions of semantics, inductive validity requires us to define a reliable generalization of some set of observations. The task of providing this definition may be approached in various ways, some less formal than others some of these definitions may use logical association rule induction, while others may use mathematical models of probability such as decision trees.

Rival conceptions Edit

Logic arose (see below) from a concern with correctness of argumentation. Modern logicians usually wish to ensure that logic studies just those arguments that arise from appropriately general forms of inference. For example, Thomas Hofweber writes in the Stanford Encyclopedia of Philosophy that logic "does not, however, cover good reasoning as a whole. That is the job of the theory of rationality. Rather it deals with inferences whose validity can be traced back to the formal features of the representations that are involved in that inference, be they linguistic, mental, or other representations." [30]

The idea that logic treats special forms of argument, deductive argument, rather than argument in general, has a history in logic that dates back at least to logicism in mathematics (19th and 20th centuries) and the advent of the influence of mathematical logic on philosophy. A consequence of taking logic to treat special kinds of argument is that it leads to identification of special kinds of truth, the logical truths (with logic equivalently being the study of logical truth), and excludes many of the original objects of study of logic that are treated as informal logic. Robert Brandom has argued against the idea that logic is the study of a special kind of logical truth, arguing that instead one can talk of the logic of material inference (in the terminology of Wilfred Sellars), with logic making explicit the commitments that were originally implicit in informal inference. [31] [ page needed ]

Logic comes from the Greek word logos, originally meaning "the word" or "what is spoken", but coming to mean "thought" or "reason". In the Western World, logic was first developed by Aristotle, who called the subject 'analytics'. [32] Aristotelian logic became widely accepted in science and mathematics and remained in wide use in the West until the early 19th century. [33] Aristotle's system of logic was responsible for the introduction of hypothetical syllogism, [34] temporal modal logic, [35] [36] and inductive logic, [37] as well as influential vocabulary such as terms, predicables, syllogisms and propositions. There was also the rival Stoic logic.

In Europe during the later medieval period, major efforts were made to show that Aristotle's ideas were compatible with Christian faith. During the High Middle Ages, logic became a main focus of philosophers, who would engage in critical logical analyses of philosophical arguments, often using variations of the methodology of scholasticism. In 1323, William of Ockham's influential Summa Logicae was released. By the 18th century, the structured approach to arguments had degenerated and fallen out of favour, as depicted in Holberg's satirical play Erasmus Montanus. The Chinese logical philosopher Gongsun Long ( c. 325–250 BCE ) proposed the paradox "One and one cannot become two, since neither becomes two." [13] [iii] In China, the tradition of scholarly investigation into logic, however, was repressed by the Qin dynasty following the legalist philosophy of Han Feizi.

In India, the Anviksiki school of logic was founded by Medhātithi (c. 6th century BCE). [38] Innovations in the scholastic school, called Nyaya, continued from ancient times into the early 18th century with the Navya-Nyāya school. By the 16th century, it developed theories resembling modern logic, such as Gottlob Frege's "distinction between sense and reference of proper names" and his "definition of number", as well as the theory of "restrictive conditions for universals" anticipating some of the developments in modern set theory. [iv] Since 1824, Indian logic attracted the attention of many Western scholars, and has had an influence on important 19th-century logicians such as Charles Babbage, Augustus De Morgan, and George Boole. [39] In the 20th century, Western philosophers like Stanislaw Schayer and Klaus Glashoff have explored Indian logic more extensively.

The syllogistic logic developed by Aristotle predominated in the West until the mid-19th century, when interest in the foundations of mathematics stimulated the development of symbolic logic (now called mathematical logic). In 1854, George Boole published The Laws of Thought, [40] introducing symbolic logic and the principles of what is now known as Boolean logic. In 1879, Gottlob Frege published Begriffsschrift, which inaugurated modern logic with the invention of quantifier notation, reconciling the Aristotelian and Stoic logics in a broader system, and solving such problems for which Aristotelian logic was impotent, such as the problem of multiple generality. From 1910 to 1913, Alfred North Whitehead and Bertrand Russell published Principia Mathematica [10] on the foundations of mathematics, attempting to derive mathematical truths from axioms and inference rules in symbolic logic. In 1931, Gödel raised serious problems with the foundationalist program and logic ceased to focus on such issues.

The development of logic since Frege, Russell, and Wittgenstein had a profound influence on the practice of philosophy and the perceived nature of philosophical problems (see analytic philosophy) and philosophy of mathematics. Logic, especially sentential logic, is implemented in computer logic circuits and is fundamental to computer science. Logic is commonly taught by university philosophy, sociology, advertising and literature departments, often as a compulsory discipline.

Syllogistic logic Edit

The Organon was Aristotle's body of work on logic, with the Prior Analytics constituting the first explicit work in formal logic, introducing the syllogistic. [16] The parts of syllogistic logic, also known by the name term logic, are the analysis of the judgements into propositions consisting of two terms that are related by one of a fixed number of relations, and the expression of inferences by means of syllogisms that consist of two propositions sharing a common term as premise, and a conclusion that is a proposition involving the two unrelated terms from the premises.

Aristotle's work was regarded in classical times and from medieval times in Europe and the Middle East as the very picture of a fully worked out system. However, it was not alone: the Stoics proposed a system of propositional logic that was studied by medieval logicians. Also, the problem of multiple generality was recognized in medieval times. Nonetheless, problems with syllogistic logic were not seen as being in need of revolutionary solutions.

Today, some academics claim that Aristotle's system is generally seen as having little more than historical value (though there is some current interest in extending term logics), regarded as made obsolete by the advent of propositional logic and the predicate calculus. Others use Aristotle in argumentation theory to help develop and critically question argumentation schemes that are used in artificial intelligence and legal arguments.

Propositional logic Edit

A propositional calculus or logic (also a sentential calculus) is a formal system in which formulae representing propositions can be formed by combining atomic propositions (usually represented with p, q, etc.) using logical connectives ( & , → , ∨ , ≡ , ∼ , etc.) these propositions and connectives are the only elements of a standard propositional calculus. [41] Unlike predicate logic or syllogistic logic where individual subjects and predicates (which do not have truth values) are the smallest unit, propositional logic takes full propositions with truth values as its most basic component. [41] Quantifiers (e.g. ∀ or ∃ ) are included in extended propositional calculus, but they only quantify over full propositions, not individual subjects or predicates. [41] A given propositional logic is a system of formal proof with rules that establish which well-formed formulae of a given language are "theorems" by proving them from axioms which are assumed without proof. [42]

Predicate logic Edit

Whilst Aristotelian syllogistic logic specifies a small number of forms that the relevant part of the involved judgements may take, predicate logic allows sentences to be analysed into subject and argument in several additional ways—allowing predicate logic to solve the problem of multiple generality that had perplexed medieval logicians.

The development of predicate logic is usually attributed to Gottlob Frege, who is also credited as one of the founders of analytic philosophy, but the formulation of predicate logic most often used today is the first-order logic presented in Principles of Mathematical Logic by David Hilbert and Wilhelm Ackermann in 1928. The analytical generality of predicate logic allowed the formalization of mathematics, drove the investigation of set theory, and allowed the development of Alfred Tarski's approach to model theory. It provides the foundation of modern mathematical logic.

Frege's original system of predicate logic was second-order, rather than first-order. Second-order logic is most prominently defended (against the criticism of Willard Van Orman Quine and others) by George Boolos and Stewart Shapiro.

Modal logic Edit

In languages, modality deals with the phenomenon that sub-parts of a sentence may have their semantics modified by special verbs or modal particles. For example, "We go to the games" can be modified to give "We should go to the games", and "We can go to the games" and perhaps "We will go to the games". More abstractly, we might say that modality affects the circumstances in which we take an assertion to be satisfied. Confusing modality is known as the modal fallacy.

Aristotle's logic is in large parts concerned with the theory of non-modalized logic. Although, there are passages in his work, such as the famous sea-battle argument in De Interpretatione § 9, that are now seen as anticipations of modal logic and its connection with potentiality and time, the earliest formal system of modal logic was developed by Avicenna, who ultimately developed a theory of "temporally modalized" syllogistic. [43]

While the study of necessity and possibility remained important to philosophers, little logical innovation happened until the landmark investigations of C. I. Lewis in 1918, who formulated a family of rival axiomatizations of the alethic modalities. His work unleashed a torrent of new work on the topic, expanding the kinds of modality treated to include deontic logic and epistemic logic. The seminal work of Arthur Prior applied the same formal language to treat temporal logic and paved the way for the marriage of the two subjects. Saul Kripke discovered (contemporaneously with rivals) his theory of frame semantics, which revolutionized the formal technology available to modal logicians and gave a new graph-theoretic way of looking at modality that has driven many applications in computational linguistics and computer science, such as dynamic logic.

Informal reasoning and dialectic Edit

The motivation for the study of logic in ancient times was clear: it is so that one may learn to distinguish good arguments from bad arguments, and so become more effective in argument and oratory, and perhaps also to become a better person. Half of the works of Aristotle's Organon treat inference as it occurs in an informal setting, side by side with the development of the syllogistic, and in the Aristotelian school, these informal works on logic were seen as complementary to Aristotle's treatment of rhetoric.

This ancient motivation is still alive, although it no longer takes centre stage in the picture of logic typically dialectical logic forms the heart of a course in critical thinking, a compulsory course at many universities. Dialectic has been linked to logic since ancient times, but it has not been until recent decades that European and American logicians have attempted to provide mathematical foundations for logic and dialectic by formalising dialectical logic. Dialectical logic is also the name given to the special treatment of dialectic in Hegelian and Marxist thought. There have been pre-formal treatises on argument and dialectic, from authors such as Stephen Toulmin (The Uses of Argument), Nicholas Rescher (Dialectics), [44] [45] [46] and van Eemeren and Grootendorst (Pragma-dialectics). Theories of defeasible reasoning can provide a foundation for the formalisation of dialectical logic and dialectic itself can be formalised as moves in a game, where an advocate for the truth of a proposition and an opponent argue. Such games can provide a formal game semantics for many logics.

Argumentation theory is the study and research of informal logic, fallacies, and critical questions as they relate to every day and practical situations. Specific types of dialogue can be analyzed and questioned to reveal premises, conclusions, and fallacies. Argumentation theory is now applied in artificial intelligence and law.

Mathematical logic Edit

Mathematical logic comprises two distinct areas of research: the first is the application of the techniques of formal logic to mathematics and mathematical reasoning, and the second, in the other direction, the application of mathematical techniques to the representation and analysis of formal logic. [47]

The earliest use of mathematics and geometry in relation to logic and philosophy goes back to the ancient Greeks such as Euclid, Plato, and Aristotle. [48] Many other ancient and medieval philosophers applied mathematical ideas and methods to their philosophical claims. [49]

One of the boldest attempts to apply logic to mathematics was the logicism pioneered by philosopher-logicians such as Gottlob Frege and Bertrand Russell. Mathematical theories were supposed to be logical tautologies, and the programme was to show this by means of a reduction of mathematics to logic. [10] The various attempts to carry this out met with failure, from the crippling of Frege's project in his Grundgesetze by Russell's paradox, to the defeat of Hilbert's program by Gödel's incompleteness theorems.

Both the statement of Hilbert's program and its refutation by Gödel depended upon their work establishing the second area of mathematical logic, the application of mathematics to logic in the form of proof theory. [50] Despite the negative nature of the incompleteness theorems, Gödel's completeness theorem, a result in model theory and another application of mathematics to logic, can be understood as showing how close logicism came to being true: every rigorously defined mathematical theory can be exactly captured by a first-order logical theory Frege's proof calculus is enough to describe the whole of mathematics, though not equivalent to it.

If proof theory and model theory have been the foundation of mathematical logic, they have been but two of the four pillars of the subject. [51] Set theory originated in the study of the infinite by Georg Cantor, and it has been the source of many of the most challenging and important issues in mathematical logic, from Cantor's theorem, through the status of the Axiom of Choice and the question of the independence of the continuum hypothesis, to the modern debate on large cardinal axioms.

Recursion theory captures the idea of computation in logical and arithmetic terms its most classical achievements are the undecidability of the Entscheidungsproblem by Alan Turing, and his presentation of the Church–Turing thesis. [52] Today recursion theory is mostly concerned with the more refined problem of complexity classes—when is a problem efficiently solvable?—and the classification of degrees of unsolvability. [53]

Philosophical logic Edit

Philosophical logic deals with formal descriptions of ordinary, non-specialist ("natural") language, that is strictly only about the arguments within philosophy's other branches. Most philosophers assume that the bulk of everyday reasoning can be captured in logic if a method or methods to translate ordinary language into that logic can be found. Philosophical logic is essentially a continuation of the traditional discipline called "logic" before the invention of mathematical logic. Philosophical logic has a much greater concern with the connection between natural language and logic. As a result, philosophical logicians have contributed a great deal to the development of non-standard logics (e.g. free logics, tense logics) as well as various extensions of classical logic (e.g. modal logics) and non-standard semantics for such logics (e.g. Kripke's supervaluationism in the semantics of logic).

Logic and the philosophy of language are closely related. Philosophy of language has to do with the study of how our language engages and interacts with our thinking. Logic has an immediate impact on other areas of study. Studying logic and the relationship between logic and ordinary speech can help a person better structure his own arguments and critique the arguments of others. Many popular arguments are filled with errors because so many people are untrained in logic and unaware of how to formulate an argument correctly. [54] [55]

Computational logic Edit

Logic cut to the heart of computer science as it emerged as a discipline: Alan Turing's work on the Entscheidungsproblem followed from Kurt Gödel's work on the incompleteness theorems. The notion of the general purpose computer that came from this work was of fundamental importance to the designers of the computer machinery in the 1940s.

In the 1950s and 1960s, researchers predicted that when human knowledge could be expressed using logic with mathematical notation, it would be possible to create a machine that mimics the problem-solving skills of a human being. This was more difficult than expected because of the complexity of human reasoning. In the summer of 1956, John McCarthy, Marvin Minsky, Claude Shannon and Nathan Rochester organized a conference on the subject of what they called "artificial intelligence" (a term coined by McCarthy for the occasion). Newell and Simon proudly presented the group with the Logic Theorist and were somewhat surprised when the program received a lukewarm reception.

In logic programming, a program consists of a set of axioms and rules. Logic programming systems such as Prolog compute the consequences of the axioms and rules in order to answer a query.

Today, logic is extensively applied in the field of artificial intelligence, and this field provide a rich source of problems in formal and informal logic. Argumentation theory is one good example of how logic is being applied to artificial intelligence. The ACM Computing Classification System in particular regards:

  • Section F.3 on "Logics and meanings of programs" and F.4 on "Mathematical logic and formal languages" as part of the theory of computer science: this work covers formal semantics of programming languages, as well as work of formal methods such as Hoare logic as fundamental to computer hardware: particularly, the system's section B.2 on "Arithmetic and logic structures", relating to operatives AND, NOT, and OR
  • Many fundamental logical formalisms are essential to section I.2 on artificial intelligence, for example modal logic and default logic in Knowledge representation formalisms and methods, Horn clauses in logic programming, and description logic.

Furthermore, computers can be used as tools for logicians. For example, in symbolic logic and mathematical logic, proofs by humans can be computer-assisted. Using automated theorem proving, the machines can find and check proofs, as well as work with proofs too lengthy to write out by hand.

Non-classical logic Edit

The logics discussed above are all "bivalent" or "two-valued" that is, they are most naturally understood as dividing propositions into true and false propositions. Non-classical logics are those systems that reject various rules of Classical logic.

Hegel developed his own dialectic logic that extended Kant's transcendental logic but also brought it back to ground by assuring us that "neither in heaven nor in earth, neither in the world of mind nor of nature, is there anywhere such an abstract 'either–or' as the understanding maintains. Whatever exists is concrete, with difference and opposition in itself". [56]

In 1910, Nicolai A. Vasiliev extended the law of excluded middle and the law of contradiction and proposed the law of excluded fourth and logic tolerant to contradiction. [57] In the early 20th century Jan Łukasiewicz investigated the extension of the traditional true/false values to include a third value, "possible" (or an indeterminate, a hypothesis) so inventing ternary logic, the first multi-valued logic in the Western tradition. [58] A minor modification of the ternary logic was later introduced in a sibling ternary logic model proposed by Stephen Cole Kleene. Kleene's system differs from the Łukasiewicz's logic with respect to an outcome of the implication. The former assumes that the operator of implication between two hypotheses produces a hypothesis.

Logics such as fuzzy logic have since been devised with an infinite number of "degrees of truth", represented by a real number between 0 and 1. [59]

Intuitionistic logic was proposed by L.E.J. Brouwer as the correct logic for reasoning about mathematics, based upon his rejection of the law of the excluded middle as part of his intuitionism. Brouwer rejected formalization in mathematics, but his student Arend Heyting studied intuitionistic logic formally, as did Gerhard Gentzen. Intuitionistic logic is of great interest to computer scientists, as it is a constructive logic and sees many applications, such as extracting verified programs from proofs and influencing the design of programming languages through the formulae-as-types correspondence.

Modal logic is not truth conditional, and so it has often been proposed as a non-classical logic. However, modal logic is normally formalized with the principle of the excluded middle, and its relational semantics is bivalent, so this inclusion is disputable.

"Is Logic Empirical?" Edit

What is the epistemological status of the laws of logic? What sort of argument is appropriate for criticizing purported principles of logic? In an influential paper entitled "Is Logic Empirical?" [60] Hilary Putnam, building on a suggestion of W. V. Quine, argued that in general the facts of propositional logic have a similar epistemological status as facts about the physical universe, for example as the laws of mechanics or of general relativity, and in particular that what physicists have learned about quantum mechanics provides a compelling case for abandoning certain familiar principles of classical logic: if we want to be realists about the physical phenomena described by quantum theory, then we should abandon the principle of distributivity, substituting for classical logic the quantum logic proposed by Garrett Birkhoff and John von Neumann. [61]

Another paper of the same name by Michael Dummett argues that Putnam's desire for realism mandates the law of distributivity. [62] Distributivity of logic is essential for the realist's understanding of how propositions are true of the world in just the same way as he has argued the principle of bivalence is. In this way, the question, "Is Logic Empirical?" can be seen to lead naturally into the fundamental controversy in metaphysics on realism versus anti-realism.

Implication: strict or material Edit

The notion of implication formalized in classical logic does not comfortably translate into natural language by means of "if . then . ", due to a number of problems called the paradoxes of material implication.

The first class of paradoxes involves counterfactuals, such as If the moon is made of green cheese, then 2+2=5, which are puzzling because natural language does not support the principle of explosion. Eliminating this class of paradoxes was the reason for C. I. Lewis's formulation of strict implication, which eventually led to more radically revisionist logics such as relevance logic.

The second class of paradoxes involves redundant premises, falsely suggesting that we know the succedent because of the antecedent: thus "if that man gets elected, granny will die" is materially true since granny is mortal, regardless of the man's election prospects. Such sentences violate the Gricean maxim of relevance, and can be modelled by logics that reject the principle of monotonicity of entailment, such as relevance logic.

Tolerating the impossible Edit

Georg Wilhelm Friedrich Hegel was deeply critical of any simplified notion of the law of non-contradiction. It was based on Gottfried Wilhelm Leibniz's idea that this law of logic also requires a sufficient ground to specify from what point of view (or time) one says that something cannot contradict itself. A building, for example, both moves and does not move the ground for the first is our solar system and for the second the earth. In Hegelian dialectic, the law of non-contradiction, of identity, itself relies upon difference and so is not independently assertable.

Closely related to questions arising from the paradoxes of implication comes the suggestion that logic ought to tolerate inconsistency. Relevance logic and paraconsistent logic are the most important approaches here, though the concerns are different: a key consequence of classical logic and some of its rivals, such as intuitionistic logic, is that they respect the principle of explosion, which means that the logic collapses if it is capable of deriving a contradiction. Graham Priest, the main proponent of dialetheism, has argued for paraconsistency on the grounds that there are in fact, true contradictions. [63] [ clarification needed ]

Rejection of logical truth Edit

The philosophical vein of various kinds of skepticism contains many kinds of doubt and rejection of the various bases on which logic rests, such as the idea of logical form, correct inference, or meaning, sometimes leading to the conclusion that there are no logical truths. This is in contrast with the usual views in philosophical skepticism, where logic directs skeptical enquiry to doubt received wisdoms, as in the work of Sextus Empiricus.

Friedrich Nietzsche provides a strong example of the rejection of the usual basis of logic: his radical rejection of idealization led him to reject truth as a ". mobile army of metaphors, metonyms, and anthropomorphisms—in short . metaphors which are worn out and without sensuous power coins which have lost their pictures and now matter only as metal, no longer as coins". [64] His rejection of truth did not lead him to reject the idea of either inference or logic completely but rather suggested that "logic [came] into existence in man's head [out] of illogic, whose realm originally must have been immense. Innumerable beings who made inferences in a way different from ours perished". [65] Thus there is the idea that logical inference has a use as a tool for human survival, but that its existence does not support the existence of truth, nor does it have a reality beyond the instrumental: "Logic, too, also rests on assumptions that do not correspond to anything in the real world". [66]

This position held by Nietzsche however, has come under extreme scrutiny for several reasons. Some philosophers, such as Jürgen Habermas, claim his position is self-refuting—and accuse Nietzsche of not even having a coherent perspective, let alone a theory of knowledge. [67] Georg Lukács, in his book The Destruction of Reason, asserts that, "Were we to study Nietzsche's statements in this area from a logico-philosophical angle, we would be confronted by a dizzy chaos of the most lurid assertions, arbitrary and violently incompatible." [68] Bertrand Russell described Nietzsche's irrational claims with "He is fond of expressing himself paradoxically and with a view to shocking conventional readers" in his book A History of Western Philosophy. [69]


NURS 6670 FINAL EXAM STUDY GUIDE CHAPTER 1 TO 39

NURS 6670 Final Exam Study Guide Chapter 1 to 39&NewLine&NewLineMental Health Case Study&NewLine&NewLineCase Study&comma Mohr&colon CHAPTER 1&comma Introduction to Psychiatric&ndashMental Health Nursing&NewLine&NewLineKaren is a 25-year-old white woman who lives alone in an apartment with her dog&period Karen has been divorced for 2 years and is taking Prozac prescribed by her psychiatrist for depression&period Karen and her boyfriend had been discussing marriage until he told her that he wanted to end their relationship&period Karen became even more depressed and could not work for a week&period Karen returned to work&comma refusing to discuss her issues with family&comma friends&comma or coworkers&period She did&comma however&comma make an appointment to see a psychiatric nurse practitioner&period Karen told the nurse that she was making some changes in her life&period Karen said that she and a girlfriend were joining a gym program for workouts and a social group for young men and women&period Karen stated that she realizes that her former boyfriend had not been committed to her&comma and she anticipates meeting and dating other young men from the adult social group&period Karen also said that she thinks that the gym exercise will be beneficial to her mentally and physically&period &lparLearning Objectives&colon 1&comma 4&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 2&comma Neuroscience&colon Biology and Behavior&NewLine&NewLineMichael is a 22-year-old college senior whose GPA has declined with this semester&rsquos grades&period Michael plans to apply to medical school and thinks that the lower GPA may prevent his acceptance to medical school&period For the last 2 weeks&comma Michael has skipped most classes because he has insomnia and fatigue&period Michael is now very depressed and has been thinking of suicide&period He took a loaded gun from his father&rsquos gun cabinet and then wrote a suicide note to his family&period At the last moment&comma he telephoned 911 and told them of his suicide plan&period The police came&comma took the gun away&comma and then took Michael to the city hospital to be admitted for psychiatric treatment&period In the admission interview with the psychiatric nurse&comma Michael said that his pastor thought that only weak-willed people experienced depression and that it was a punishment for personal sins and the sins of one&rsquos ancestors&period Michael told the nurse that he must be weak-willed and will never be able to accomplish anything&period The psychiatric nurse explained that multiple factors are the cause of depression&period The nurse told Michael that one theory holds that an imbalance of neurotransmitters&comma or chemical messengers of the brain&comma occurs in depression&period Neurotransmitters influence the individual&rsquos emotions&comma thoughts&comma and subsequent behavior&period Recent research implies that neurobiology&comma heredity&comma as well as Psychological and environmental factors may be involved in the development and progression of depression&period &lparLearning Objectives&colon 5&comma 6&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 3&comma Conceptual Frameworks and Theories&colon&NewLine&NewLineThe student nurse has been assigned a 37-year-old woman admitted to the psychiatric hospital with an anxiety disorder&period This morning&comma the student notices that the client has a tense facial expression and is walking constantly around the group room&period The student walked over to the client and used reflective communication by stating&comma &OpenCurlyDoubleQuoteI see that you have a tense expression and are walking around almost all of the time&period Is there something that we could discuss&quest&rdquo The client replied that she has talked on the telephone to her mother who was keeping her children while she was in the hospital&period The client said that her mother had told her that she was not a good mother&comma and then said&comma &OpenCurlyDoubleQuoteI guess I am a bad mother&comma but I could never measure up to my mother&rsquos expectations&period&rdquo The student has learned that negative self-talk can greatly aggravate anxiety and lead to depression&period The student decided to use a behavioral intervention with the client and asked the client who is a good artist and why the client liked the artist&rsquos works&period The student and the client then made a list of activities that the client liked&period The student taught the client to engage in one of these activities when an unpleasant experience evoked negative thoughts&period The following day&comma the student decided that the client needed some cognitive restructuring for her relationship with her mother&period The student taught the client that during discussions with her mother&comma feelings of incompetence might be experienced when the mother made negative comments&period The client was instructed that if her mother made negative comments about parenting&comma she was to immediately tell her mother that she was a good parent to her children and terminate the conversation at the first opportunity&period&lparLearning Objective&colon 3&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 4&comma Evidence-Based Practice&NewLine&NewLineJessica&comma a 17-year-old girl who came with her family from Romania to the United States 10 years ago&comma is brought to the mental health clinic by her mother&period At the admission psychiatric interview&comma the mother stated that Jessica has been saying for 6 months that aliens have been conducting experiments on her and will soon take her in a spaceship to their planet&period Jessica is often awake at night and roams the house with a hammer and sharp knife&comma searching for aliens&period Jessica&rsquos mother says that she fears that some night Jessica will harm a family member whom she believes to be an alien&period The mother then said that she did not bring Jessica for psychiatric care earlier because she had heard that much of mental health treatment was quackery and a waste of money&period The psychiatric nurse explains to Jessica&rsquos mother that all mental health treatment is based on scientific principles&period &lparLearning Objective&colon 3&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 5&comma Legal and Ethical Aspects&NewLine&NewLineGerald&comma a 22-year-old black man&comma has a diagnosis of schizoaffective disorder&period Gerald has been living at home&comma but this afternoon he had a physical fight with the neighbors and set a fire in their garage to burn their house&period His father took him to the local psychiatric hospital and said that he wants an involuntary commitment for Gerald since he will not agree to the hospitalization&period The father expressed concern over Gerald&rsquos legal rights&period The psychiatric nurse practitioner recommends to the father that he commit Gerald on involuntarily for emergency care for a period of 72 hours since he is clearly a danger to others&period The nurse explains that Gerald will be evaluated to determine if he needs involuntary detention for observation and treatment for a longer period of time&period The nurse explains that Gerald will be periodically evaluated&comma and that when it is determined that he is no longer a danger to others or himself&comma Gerald will be released from the hospital&period&lparLearning Objectives&colon 4&comma 5&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 6&comma Culture&NewLine&NewLineMaria Gonzalez is a Mexican National&comma age 58&comma who was brought to a health clinic by her adult son&period She is complaining that she has had aches and pains all over her body for 2 days&period Mrs&period Gonzalez states that her neighbor is a witch who gave her the mal do ojo &lparevil eye&rpar and cast a spell on her to cause her death&period The clinic nurse takes an oral temperature and it is 101º F&period The clinic nurse refers Mrs&period Gonzales to the clinic physician because she believes that the client has influenza&period Mrs&period Gonzales is reluctant to see the doctor and states that the doctor cannot prevent her death&period &lparLearning Objective&colon 8&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 7&comma Spirituality in Psychiatric Care&NewLine&NewLineMarta&comma a 16-year-old high school teenager&comma has been depressed over a recent break-up with her boyfriend&period Marta&comma accompanied by her mother&comma is seen in the community mental health clinic&period A mild antidepressant is prescribed for Marta with weekly counseling sessions&period Marta and her mother ask if it would be beneficial for Marta to attend a 1-week church camp to begin in 2 months&period Marta would like to reconnect with her religion and voices a belief that the camp experience will help her&period The psychiatric nurse practitioner informs them that research reveals that involvement in religious activities has been helpful in social support and in coping with depression&period Marta appears relieved and said that she will register for the church camp&period&lparLearning Objective&colon 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 8 Nursing Values&comma Attitudes&comma and Self-Awareness&NewLine&NewLineJoe&comma a 26-year-old Caucasian man&comma is a client in a state prison system&period Joe is admitted to the prison clinic after being involved in a fight in which he sustained a stab wound to the chest that did not penetrate the lungs or major blood vessels&period The clinic doctor on duty was an employee of several years at the prison&period The doctor showed little compassion for Joe&comma stating&comma &OpenCurlyDoubleQuoteHe is a convicted criminal&comma and he is just getting back some of what he deserves&period&rdquo The new graduate nurse who was being oriented to the clinic thought that the doctor did not exhibit professional behavior toward Joe&period The clinic nursing supervisor later explained that the doctor was influenced by situational factors&period&lparLearning Objective&colon 3&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 9&comma the Nursing Process in Psychiatric&ndashMental Health Care&NewLine&NewLineThe student nurse is assigned to assist the psychiatric nurse with the admission interview of a client at the psychiatric hospital&period The nurse explains to the student that the interview is very important in obtaining a total health history of the client&period The nurse should be courteous and respectful of the client to obtain as much information from the client as possible&period Assessment information should include the subjective information from the client with the reason for needing treatment&comma the cause of the present problem&lpars&rpar&comma and the client&rsquos expectation of the outcome of treatment regimen&period The nurse alerts the student to the need to be sensitive to both verbal and nonverbal behavior of the client and to focus on topics that seem important to the client&period&lparLearning Objective&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 10&comma the Interview and Assessment Process&NewLine&NewLineThe student nurse is accompanying the psychiatric nurse during the nursing interview and assessment of a newly admitted patient&period The psychiatric nurse told the student that preparation with subjective and objective data collection is an important part of the process&period The nurse explains that assessment has reference to the interviewer&rsquos interpretation and prioritization of all data for the client&period The nurse must have self-awareness and self-knowledge to be objective and avoid influencing the responses of the client&period Anxiety on the part of the nurse may limit the ability for thorough data collection and interpretation&period Anxiety in the nurse may evoke anxiety on the part of the client&period The psychiatric nurse stressed that a process recording&comma or written analysis of the interaction between the client and nurse&comma is essential for nurses to recognize the effects of their communication style in the assessment process&period A review of the client&rsquos history is important&comma and a private setting for the interview is necessary&period The content of the nursing assessment should include the ability and reliability of the client&rsquos response to questions of the interviewer and the skill of the nurse in identification of relevant facts&period The nurse should discuss with the client prior health history&comma any present illness&comma and the reason for seeking healthcare at this time&period Medication history with compliance and allergies of the client require investigation&period Substance use by the client&comma past illnesses&comma and family history need exploration&period&lparLearning Objective&colon 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 11&comma Therapeutic Relationships and Communication&NewLine&NewLineTwo student nurses are preparing for psychiatric&ndashmental health clinical learning experiences&period They decided to review the assigned reading and lecture notes from their class on therapeutic communication&period After discussion&comma the students decided that the elements of respect&comma genuineness&comma and caring in talking to clients could lead to a trusting relationship&period Both students voiced concern over their ability to develop and maintain a professional and not a social relationship&period &lparLearning Objectives&colon 1&comma 6&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 12&comma Working with the Multidisciplinary Team&NewLine&NewLineA multidisciplinary team meeting is in progress for Cindy&comma a 21-year-old college student who has recently been diagnosed with schizophrenia&period Cindy had been an excellent student on the dean&rsquos list until 2 weeks ago&comma when she stopped attending classes&comma stayed in her room with the blinds drawn&comma and refused to eat because &OpenCurlyDoubleQuotethey have poisoned the food&period&rdquo The team includes Cindy&rsquos psychiatrist&comma primary nurse&comma unit psychologist&comma social worker&comma occupational therapist&comma and a registered dietician&period Cindy and her parents attend the team meeting&period The team members introduced themselves and stated that they would monitor and coordinate the treatment plan for Cindy&comma evaluate her progress in treatment&comma and plan for her discharge&period&lparLearning Objective&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 13&comma Individual Therapies and Nursing Interventions&NewLine&NewLineFrank&comma a 16-year-old adolescent&comma is a high school sophomore&period Frank is on the verge of failing his Spanish class&period After his grade fell to a &OpenCurlyDoubleQuoteD&rdquo grade&comma Frank procrastinated about doing his Spanish homework&comma postponing it until last&period Then&comma saying he was tired&comma Frank played video games until bedtime and rationalized that he would get up early in the morning and do his homework&period Frank often sleeps late and does not have time to complete his Spanish homework&period Frank is now very distressed over his grade in the Spanish class&period His mother brought Frank to the counselor to help with his problem&period The counselor suggested a parent-teacher conference to explore any learning difficulties and the possibility of a tutor to help Frank&period The counselor also said that perhaps Frank&rsquos mother could supervise the completion of his Spanish homework as the first step&period Frank appeared relieved at these suggestions&comma and said&comma &OpenCurlyDoubleQuoteThat sounds great&excl Maybe I can improve my Spanish grade and pass the class&period Then I won&rsquot be a loser&excl&rdquo&lparLearning Objective&colon 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 14&comma Groups and Group Interventions&NewLine&NewLineMary&comma a student nurse&comma is studying for an upcoming examination in her psychiatric&ndashmental health nursing class&period Mary is reviewing group psychiatric therapy and made some practice test questions on this topic&period Help Mary study by answering the following questions&period&lparLearning Objectives&colon 7&comma 10&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 15&comma Families and Family Interventions&NewLine&NewLineWanda&comma a 17-year-old high school senior&comma has been rejected by a boy in her chemistry class whom she wanted to date for the senior prom&period Wanda became severely depressed and attempted suicide with an overdose of barbiturates&period Wanda&rsquos mother found her unconscious and called an emergency ambulance to take her to the emergency department at the local hospital&period After Wanda&rsquos recovery&comma she was in individual counseling&comma and the psychiatrist referred all family members for counseling&period Naomi&comma her younger sister&comma refused to go&comma saying that she did not have a problem and that Wanda was the one who had tried to commit suicide&period Her older brother&comma Matthew&comma had a similar response and added that Wanda had embarrassed the family&period Wanda&rsquos parents stated that they would attend and urged both Naomi and Matthew to attend family counseling&period&lparLearning Objective&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 16&comma Psychopharmacology&NewLine&NewLineThe student was reviewing the medication record for a client diagnosed with major depressive disorder with psychotic features&period The client has been on medications for the past 12 years&comma has exhibited many side effects&comma and experienced multiple medication changes&period On this admission&comma the client has developed abnormal movements of the tongue&comma a masklike face&comma shuffling gait&comma and constipation&period The client is taking a selective serotonin reuptake inhibitor &lparSSRI&rpar and an antipsychotic&period&lparLearning Objective&colon 6&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 17&comma Integrative Therapies&NewLine&NewLineMarjorie Alin has been diagnosed with major depression and has recently been placed on antidepressants&period Marjorie uses herbal medication and has always been interested in complementary and alternative medicine &lparCAM&rpar&period She asks the nurse practitioner what CAM therapies might be effective for depression&period &lparLearning Objective&colon 4&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 18&comma Somatic Therapies&NewLine&NewLineJulie Abrams&comma a married 45-year-old African American client&comma is admitted to the hospital for severe depression&period Although Julie is taking her antidepressant medication&comma she seldom leaves her bed&comma sleeps most of the time&comma and has refused to eat for 6 days&period Her psychiatrist has decided that ECT treatments are necessary to improve Julie&rsquos depression&period Mr&period Abrams&comma Julie&rsquos husband&comma is alarmed to learn that Julie will receive ECT&period The psychiatric nurse practitioner explains the ECT procedure and treatment that Julie will receive&period Mr&period Abrams asked the nurse practitioner what ECT is&comma how it will help Julie&comma and if there will be any harmful effects for her&period&lparLearning Objectives&colon 2&comma 3&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 19&comma Inpatient Care Settings&NewLine&NewLineRobert Woods has been admitted to an inpatient psychiatric facility due to a resurgence of his manic symptoms because he has not been taking his psychiatric medications&period His sister has been trying to supervise Robert&comma who lives in a small apartment a few miles away&period The sister is very frustrated and feels she cannot continue to monitor Robert successfully any longer&period She asks what kinds of inpatient care options are available to assist in caring for Robert and voices concern about Robert&rsquos noncompliance with his psychiatric medications&period&lparLearning Objectives&colon 1&comma 4&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 20&comma Community and Home Psychiatric Care&NewLine&NewLineJim is a 10-year-old student in elementary school&period The teacher is concerned that Jim may need psychological counseling and possibly psychiatric care since the recent suicide of his father&period Jim had formerly been an outgoing child who had excellence performance in schoolwork&period Jim is now withdrawn&comma does not socialize&comma and is doing poor work in school&period Jim&rsquos mother has not responded to a call from the teacher to come to school for a conference to explore ways to help Jim&period The teacher consults the school nurse for assistance&period&lparLearning Objectives&colon 1&comma 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 21&comma Forensic Psychiatric Nursing&NewLine&NewLineTwo student nurses are assigned to the forensic unit for their psychiatric learning experiences&period They are both slightly apprehensive but want to learn from the nursing staff the role of the nurse in forensic psychiatric nursing&period &lparLearning Objectives&colon 1&comma 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 22&comma Sleep Disorders&NewLine&NewLineJames&comma a 12-year-old middle-school student&comma is having problems with his schoolwork&period James cannot sleep until late at night and has been unable to arrive at school until later in the morning due to excessive morning sleepiness and difficulty awakening&period James is concerned and depressed over this considerable insomnia with subsequent tardiness in arriving at school&period The teacher referred James to the school psychologist&comma who recommended psychological testing to determine if James has a learning disability&period The results of the test show that James does have a learning disability and needs special placement for his English class&period James continues to have insomnia&period The pediatrician recommended that James have a study at a sleep clinic&period After the test&comma James was given a sleep schedule and was able to return to his normal sleep schedule&period His schoolwork improved after he was able to achieve adequate sleep&period &lparLearning Objectives&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 23&comma Anxiety Disorders&NewLine&NewLineAmy is a 33-year-old housewife who has been saying that she is worried but cannot explain why she feels worried&period Amy and her husband have two children&comma and the family members are healthy and financially secure and have no identified problems&period Amy has resigned from her volunteer position at her children&rsquos school&comma stating that she is tired&period Amy always had great pride in keeping an immaculate home and preparing nutritional meals for her family&period For the past month&comma she has neglected her housework and seldom cooks meals for her family&period For the past 3 weeks&comma Amy has told her husband that she is afraid that &OpenCurlyDoubleQuotesomething bad is going to happen to us&period&rdquo Amy is now afraid for her children to leave the home to attend school and for her husband to go to his office to work&period&lparLearning Objectives&colon 1&comma 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 24&comma Somatoform&comma Dissociative&comma and Sexual Disorders&NewLine&NewLineRoger is a 60-year-old&comma twice-divorced&comma Hispanic man who is retired&period His only support system is two adult sons with whom he has a distant relationship&period Roger has medical insurance from his retirement and constantly complains that he has some medical problem&period He &OpenCurlyDoubleQuotedoctor shops&rdquo by seeing different doctors for his various complaints&period Roger is always asking the doctors if he needs surgery&period In the past 5 years&comma he has undergone an exploratory laparotomy for complaints of abdominal pain&comma three colonoscopies for complaints of alternate diarrhea and constipation&comma and numerous diagnostic tests for his many physical complaints&period All tests and procedures have negative findings for any physical basis&period Roger remains convinced that he has multiple problems that the doctors are unable to diagnose&period &lparLearning Objectives&colon 1&comma 3&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 25&comma Personality Disorders&NewLine&NewLineCharles&comma a 29-year-old white man&comma has been admitted to the psychiatric hospital&period Charles does not seem depressed and openly discusses that he had attempted suicide after he had burned his employer&rsquos office and truck&period Charles told the student nurse that he had been mad at his boss because he was a &OpenCurlyDoubleQuoteslave driver&rdquo and shows no remorse for destroying his employer&rsquos office and truck&period Charles has limited contact with his mother&comma who is his only family support&period Charles is divorced and states that his ex-wife just got pregnant so that he would marry her&period They have one child&comma and he is several months behind in child support&period Other information that Charles gave the student nurse in an interview included that he was an ex-marine but had a dishonorable discharge due to stealing some extra government supplies that he said no one needed&period In the treatment team&comma the psychiatrist stated that Charles was not suicidal and diagnoses him with antisocial personality disorder&period&lparLearning Objectives&colon 1&comma 3&rpar&NewLineCase Study&comma Mohr&colon CHAPTER26&comma Eating Disorders&NewLine&NewLineAnna is a 20-year-old college student who is slightly overweight&period Anna is neat and orderly and considered to be a perfectionist&period Anna has a sister&comma Margie&comma who is 2 years younger and has always been very slim&period Anna thinks that she is ugly and that her sister is pretty&period Anna began a daily diet of 500 calories with a rigid exercise program to lose weight rapidly&period Anna&rsquos weight decreased below the normal amount for her height&period Anna continued to diet by reducing her daily caloric intake to 250 calories and then to 100 calories and began to look emaciated&period Anna&rsquos parents asked her to increase her food intake&comma but Anna said that she was &OpenCurlyDoubleQuotestill fat and ugly&period&rdquo Anna&rsquos parents intervened by taking her to a psychiatrist for treatment&period Anna&rsquos diagnosis was anorexia nervosa&period&lparLearning Objectives&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 27&comma Depressive Disorders&NewLine&NewLineSarah&comma a 37-year-old bank employee&comma has developed a depressive disorder&period Sarah was engaged and planned to be married next month&period Her fiancé suddenly broke off their engagement and told Sarah that he had accepted a job in Europe and was moving there immediately&period Sarah&rsquos depression began shortly after this and has progressed to the point that she is now seeing a psychiatrist for treatment&period Sarah&rsquos family has a history of depressive disorders&period Her father has experienced recurrent episodes of depression for 20 years&period Sarah&rsquos paternal aunt and great uncle both committed suicide&period &lparLearning Objectives&colon 1&comma 2&rpar&NewLineCase Study&comma Mohr&colon Chapter 28&comma Bipolar Disorders&NewLine&NewLineNorma&comma a 36-year-old Hispanic woman has been admitted to the psychiatric hospital with a diagnosis of Bipolar I Disorder&period Norma has very heavy make-up with dangling earrings and several bracelets&comma and she is wearing a bright red blouse with tight jeans&period Norma is very restless and walks unceasingly around the nursing unit&comma laughing and talking to other clients in a loud voice&comma with frequent change of subjects&period Norma is very sexually provocative with male clients&comma following them around the nursing unit&period She becomes angry when the male clients do not seem interested in her&period&lparLearning Objectives&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 29&NewLine&NewLineJoyce Mullins is a 31 years old client whose diagnosis is schizophrenia&comma disorganized type&period Joyce is in the state mental hospital for a long-term commitment&period The student nurse is escorting Joyce and a group of patients to an art class&period Suddenly&comma Joyce stop and look down at the sidewalk and then says &OpenCurlyDoubleQuotethere are many brains down there on the sidewalk&rdquo later&comma the student is reviewing the symptoms of schizophrenia for a nursing care plan&period Learning objectives&colon&NewLineCase Study&comma Mohr&colon CHAPTER 30 Substance Use Disorders&NewLine&NewLineJohn&comma a 23-year-old unemployed man&comma is addicted to cocaine&period John lives with his mother and sister and has been stealing money from them to pay for his cocaine&period His mother persuaded John to voluntarily commit himself to the hospital for treatment of his substance abuse&period In the initial assessment interview&comma the nurse learns that John began smoking marijuana at age 19 and occasionally consumes alcohol&period John said that he started on cocaine after his father&comma who had a history of alcoholism&comma committed suicide&period John says that he began to feel anxious then and still has periods of anxiety&period John is cooperative with his treatment program and stated that he wants to get completely off drugs and get a good job to help his mother and sister&period John also said that if he experienced anxiety&comma he would take a stiff drink like his father had done when he was anxious&period &lparLearning Objectives&colon 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 31 Cognitive Disorders&NewLine&NewLineWill Lunsford is a 78-year-old widower who lives with his daughter&period Lunsford has been increasingly irritable and has lost many personal items during the past few weeks&period Today&comma he returned from a trip around the neighborhood to say that he had lost his truck and could not remember where he parked it&period The preceding week&comma Mr&period Lunsford declared that the telephone was broken when he could not remember how to dial the number of his friend&period He also asked his daughter when they would have breakfast one morning an hour after they had eaten breakfast&period Mr&period Lunsford&rsquos daughter made an appointment for him to be seen by his doctor&period The doctor diagnosed Mr&period Lunsford with Alzheimer&rsquos disease&period &lparLearning Objectives&colon 1&comma 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 32 Anger and Aggression&NewLine&NewLineFrances&comma a 49-year-old African American client&comma is a newly admitted patient to the psychiatric hospital&period Frances has the dual diagnoses of Bipolar I and Borderline Personality Disorder&period Frances refuses to abide by the unit rules of being out in the day room after breakfast and is staying in her room&period Her treatment level permits her to make two telephone calls daily&comma and Frances is demanding unlimited access to the telephone Frances is becoming increasingly frustrated and angry at the staff and has used some expletives in telling them what she thinks of the unit rules&period The primary nurse attempts to defuse Frances&rsquo anger but finally becomes frustrated and angry herself&comma and she commented to Frances that if she did not cooperate with unit rules&comma she could expect to be in the hospital longer than usual&period Frances then lunged at the nurse&comma striking her on the head with her fist&period Frances was taken to the calming room and given a medication for her aggressive behavior&period &lparLearning Objectives&colon 2&rpar&NewLineCase Study&comma Mohr&colon Chapter 33 Violence and Abuse&NewLine&NewLineNita&rsquos mother died when she was an infant&period Her father married a young woman 1 year after the death of Nita&rsquos mother&period A baby girl was born to the stepmother 2 years later&comma followed by the birth of a baby boy 4 years later&period The stepmother showed much preferential treatment to her own children&comma while she basically ignored Nita except to routinely ridicule her&period The most difficult household chores were given to Nita&comma with no chores given to her own daughter&period The stepmother frequently severely punished Nita without reason&period Publicly&comma the stepmother insisted that she treated Nita and her daughter alike in every way&period However&comma she always praised her own daughter&comma while continuing to verbally abuse Nita&period Nita&rsquos father put his wife in full charge and had almost no interaction with Nita&period He&comma too&comma showed preferential treatment for his two children with his second wife&period When Nita was 14 years old&comma her aunt insisted that Nita move to live with her&period The aunt was very nurturing&comma and Nita&rsquos life improved tremendously&period Nita was very intelligent and excelled in school&period Nevertheless&comma she was slow to make close friends and lacked confidence in social situations&period Nita became a successful professional as a college professor&period Nita appeared afraid to form a close relationship and was 31 years old when she married&period &lparLearning Objectives&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 34 Suicide and Suicidal Behavior&NewLine&NewLineKate&comma a 35-year-old white woman&comma who moved to another city to take a new job&period Kate has a depressive disorder and has no friends in her new city&semi her only family support is one brother&period Kate has lost her new job and is without insurance or funds to purchase her prescribed antidepressants&period Kate formerly had excellent credit but now realizes that since she has no money&comma she may have to declare bankruptcy&period Kate became extremely depressed&comma purchased a gun&comma wrote suicide letters to her friends&comma and decided to commit suicide&period Kate then called 911 just before pulling the trigger on the gun&period However&comma the gun jammed and did not eject bullets&period A policeman came to her apartment in response to the 911 call and took Kate to the local psychiatric hospital&period After discharge&comma Kate went to live with her brother&period Kate&rsquos brother is concerned that she is a continued suicide risk&period &lparLearning Objectives&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 35 Crisis Intervention&NewLine&NewLineFrances Gordon is a 42-year-old divorced school teacher&period Her 20-year-old daughter&comma Sarah&comma has developed schizophrenia and has withdrawn from college&period Her youngest daughter&comma Glenda&comma is a 19-year-old unmarried mother who is living at home&period Glenda has just given birth to a baby boy who has a heart defect&period The baby&rsquos father refuses to pay for any of the healthcare costs&period Frances&rsquo dire economic situation is very stressful to her&period Her ex-husband refuses to help financially&comma and the bank has refused a second loan to Frances&period&lparLearning Objectives&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 36 Pediatric Clients&NewLine&NewLineJeremy is a 9-year-old child hospitalized in the children&rsquos unit of a psychiatric hospital&period Jeremy&rsquos biological father died 2 years ago&comma and the mother now has a live-in boyfriend who has repeatedly sexually abused Jeremy&period Jeremy&rsquos teacher reported this abuse to the Children&rsquos Protective Services&comma and Jeremy was removed from the home&period Jeremy&rsquos biological mother has experienced a depressive disorder for several years&period Since he has been living with his foster parents&comma Jeremy has exhibited numerous problems of angry outbursts with physical violence toward other children living in his foster home&period The foster parents are seeking help from the psychiatrist to continue to care for Jeremy in their home&period&lparLearning Objectives&colon 1&comma 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 37 Older Adult Clients&NewLine&NewLineMolly Brewster is a 79-year-old white widow who is admitted to the hospital for diagnostic studies&period Mrs&period Brewster has been feeling fatigued with slight depression that has been increasing for the past 2 weeks prior to admission&period The student nurse is assigned to care for Molly and explain some of the preparation for the diagnostic studies&period &lparLearning Objectives&colon 1&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 38 Homeless Clients&NewLine&NewLineKevin&comma a 39-year-old unemployed homeless male who has paranoid schizophrenia&comma was brought to the psychiatric hospital by the police&period Citizens called the police because Kevin was in the street directing pedestrians and traffic in opposition to the traffic lights and verbally abusing everyone who did not follow his directions&period Kevin is known to the police since he is often homeless&comma and states that his family does not want him&period Kevin also has a history of poly substance abuse with alcohol&comma heroin&comma and crack cocaine&comma and he has been jailed for public intoxication several times&period The nursing assessment reveals that Kevin has not been taking his prescribed psychotropic medications for 3 weeks&period Kevin states that he does not have any money&comma and he does not remember where to go for mental health care &lparLearning Objectives&colon 2&rpar&NewLineCase Study&comma Mohr&colon CHAPTER 39 Clients with Medical Illnesses&NewLine&NewLineCarla&comma a 27-year-old white single mother of two preschool-age children&comma is in the psychiatric hospital for treatment of anxiety and depression&period Carla has a cardiac condition that requires surgery&period Carla is concerned over the financial cost of the surgery and caretakers for her children while she is in the hospital and undergoing rehabilitation&period Carla is also worried that she may be unable to continue in her present employment as a salesperson due to the physical demands of this position&period Carla&rsquos case is representative of many patients with medical conditions who develop psychiatric symptoms&period&lparLearning Objectives&colon 1&comma 2&rpar


Watch the video: u0026 Study Guide Video 1 of 4 (August 2022).